Aditi Juneja – Understanding API Dispatching in NetworkX | PyData Global 2024

www.pydata.org

Hi! Have you ever wished your pure Python libraries were faster? Or wanted to fundamentally improve a Python library by rewriting everything in a faster language like C or Rust? Well, wish no more… NetworkX’s backend dispatching mechanism redirects your plain old NetworkX function calls to a FASTER implementation present in a separate backend package by leveraging the Python’s entry_point specification!

NetworkX is a popular, pure Python library used for graph(aka network) analysis. But when the graph size increases (like a network of everyone in the world), then NetworkX algorithms could take days to solve a simple graph analysis problem. So, to address these performance issues, a backend dispatching mechanism was recently developed. In this talk, we will unveil this dispatching mechanism and its implementation details, and how we can use it just by specifying a backend kwarg like this:

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVideoTimestamps